ای یاد تو مونس روانی

جز نام تو نیست بر زبانم

فارماکولوژی دامپزشکی

فارماكولوژى پايه

Introduction

- Pharmacokinetics: A mathematical description of the time course of drug absorption, distribution, metabolism, and elimination.
- The goal of pharmacokinetic modeling:
 - To establish therapeutic drug doses and dosing regimens.
 - To establish drug withdrawal times for meat and milk in food animals.
- Important pharmacokinetic parameters:
 - Bioavailability, clearance, serum half-life $(t_{1/2})$, and volume of distribution (V_d) .

Bioavailability-1

- Bioavailability: for description of the rate and extent to which a drug reaches its site of action.
- Drugs given IV are essentially 100% bioavailable.
 - Other parenteral routes (IM or SC): Greater bioavailability than those given orally.
- The bioavailability by other routes: The fraction of the dose that reaches the blood circulation in an active form.
 - Any factor that affects drug absorption, influences drug bioavailability.

Bioavailability-2

- Oral drugs
 - Bioavailability depends on: GI absorption + hepatic and GI metabolism
- The oral bioavailability of some drugs can be severely limited by extensive first-pass hepatic metabolism.
- In general, orally administered drugs should have a relatively high bioavailability, but in reality the reproducibility of absorption is more clinically important.

Bioavailability-3

- Mathematically, bioavailability is represented by the AUC of a drug's plasma concentration-time curve.
 - A Plasma Concentration–Time Curve Following Oral Drug Administration

- V_d: quantitative estimate of the extent of drug distribution.
 - A Plasma Concentration–Time Curve Following Oral Drug Administration

- A theoretical volume in which the total drug would have to be uniformly distributed to give the observed Cp.
- A proportionality constant that relates the amount of drug in the body to the concentration of drug in the blood:
 - Vd = total amount of drug in the body / serum drug concentration at steady state (Css)

- If V_d = plasma volume: the drug is confined to the plasma \Rightarrow not useful as a drug
- If V_d > plasma volume: the drug is localized outside the plasma
- High lipid solubility \Rightarrow cell penetration \Rightarrow distribution intra-cellularly \Rightarrow a larger V_d than drugs confined to interstitial fluids

- $\bullet~\mbox{The V}_{\rm d}$ reflects a drug's affinity for plasma and tissue binding.
- High levels of plasma protein binding $\Rightarrow \downarrow V_d$ to the plasma volume
- Binding to tissues $\Rightarrow \uparrow V_d$
- Highly lipid solubility \Rightarrow slowly partitioning into adipose tissue $\Rightarrow \uparrow V_d$
- Adipose tissue has a low blood supply: Drug deposition in fat ⇒ ↑ drug accumulation
 - Obesity \Rightarrow \uparrow the Vd of highly lipophilic drugs

- Clearance: the volume of blood cleared of a drug per unit of time
- Total clearance: the sum of clearances from each eliminating organ (liver, kidneys, and lungs)

Clearance = rate of drug elimination / serum drug concentration

- Clearance is important in determining dosage regimens required to produce a desired steady-state serum drug concentration (Css).
- Css is established when clearance = the rate of drug administration.

Dosing rate = clearance / steady-state serum concentration of drug

- Clearance is constant over a range of drug doses as long as the systems for drug uptake and elimination are not saturated
 - First-order kinetics: A constant fraction of the drug is eliminated per unit of time.
- When any component of drug uptake or elimination becomes saturable:
 - Zero-order kinetics: A constant amount of drug is eliminated per unit of time \Rightarrow clearance becomes variable.

- Clearance may be influenced by:
 - Plasma protein binding
 - Organ perfusion
 - Drug-metabolizing enzyme ability
 - The efficiency of renal excretion.
- A drug bound to plasma proteins is not filtered at the glomerulus.
 - If drug excretion by filtration is the major mode of elimination from the body, changes in the extent of protein binding can affect the rate of renal clearance.
 - Plasma protein binding does not alter the clearance of drugs that are metabolized by the liver and excreted in the bile.

- Clearance will vary depending on the drug hepatic extraction ratio (HER).
 - The hepatic extraction ratio is the fraction of drug presented to the liver that is cleared after a single pass through the liver.
- If >70% of a drug is extracted by the liver in one pass, the drug is said to have a high HER (propranolol, diltiazem, chlorpromazine).
 - Clearance of this drug is described as blood flow limited and any factor that alters hepatic blood flow will affect drug clearance.

- If HER 30% (most drugs): clearance is closely tied to free drug concentration.
- Now changes in plasma protein binding or in the intrinsic ability of the organ to metabolize the drug will have a greater effect on total clearance.

Plasma Half Life (t_{1/2}) - 1

- t_{1/2}: The time it takes for the total amount of drug in the body to decrease by 50%.
- It gives an estimate of the duration of drug effects in the body.
- The t_{1/2} is a derived parameter dependent on both clearance and Vd.

 $t_{1/2} = 0.693 Vd / clearance$

Plasma Half Life (t_{1/2}) - 2

- Diseases alter clearance and Vd independently $\Rightarrow t_{1/2}$ is an unreliable indicator of elimination.
- Some compounds may have similar clearances, but very different $t_{1/2}$ values.
 - Ampicillin and digoxin have similar clearances
 - They differ Vd
 - $t_{1/2}$ of Ampicillin = values of 48 min
 - $t_{1/2}$ of Digoxin = 1,680 min

Plasma Half Life (t_{1/2}) - 3

- t_{1/2} is a useful parameter for the determination of:
 - The amount of time required to reach steady-state drug concentrations (about $4 \times t_{1/2}$)
 - The time it takes for a drug to be removed from the body (50% should be eliminated in each $t_{1/2}$).
 - A means to estimate dosing interval

Home Page http://www.gsadeghi.com

gsadeghi@ut.ac.ir

تو خشنود باشی و ما رستگار

خدايا چنان کن سرانجام کار